I B.TECH II SEMESTER REGULAR EXAMINATIONS, SEPTEMBER - 2021 ENGINEERING MECHANICS (Common to Civil and Mechanical Branches)

Time : 3 Hours
Max. Marks : 70
Note : Answer ONE question from each unit ($\mathbf{5} \times \mathbf{1 4}=\mathbf{7 0}$ Marks)

UNIT-I

1. a) Define Resultant force, equilibrant, Torque and couple.
b) Determine the resultant of the four concurrent forces shown in Figure1.

Figure 1
(OR)
2. a) State and Prove Varignon's Theorem.
b) A system of loads acting on a beam as shown in Figure-2. Determine the resultant of loads at the distance x from ' A ' end.

Figure 2
UNIT-II
3. a) Differentiate statically determinate and indeterminate truss.
b) Determine the forces in the members GF, CD and CF of the frame shown in Figure-3.

Figure 3
(OR)
4. a) Differentiate static friction and dynamic friction?
b) Determine the necessary force P acting parallel to the plane to cause motion to impend as shown in the Figure-4. Assume coefficient of friction as 0.25 and the pulley to be smooth. Weight of A 45 kg , weight of B is 135 kg and angle is 45°.

Figure 4

UNIT-III

5. a) Explain the procedure to find centroid of plane composite surface.
b) Determine by direct integration the coordinates of the centroid of the shaded area formed by the integration of a straight line $y=m x$ and the parabola $y=k x^{2}$ as shown in the Figure -5 .

Figure 5
(OR)
6. a) Explain parallel axis theorem in area moment of inertia.
b) Determine the moments of inertia of the shaded area with respect to the centroidal axis parallel to side AB as shown in the Figure - 6 .

Figure 6
Page $\mathbf{2}$ of $\mathbf{4}$

UNIT-IV

7. a) A stone is dropped into a well while splash is heard after 2.5 seconds. Then determine depth of water surface assuming the velocity of sound as $330 \mathrm{~m} / \mathrm{s}$.
b) A motorist takes 10 seconds to cover a distance of 20 m and 15 seconds to cover a distance of 40 m . Find the uniform acceleration of the car and the velocity at the end of 15 seconds.
(OR)
8. a) Establish the Relationship between Angular motion \& linear motion?
b) Determine the tension in the string and the velocity of 1500 N block shown in Figure 7, 5 seconds after starting from (i) Rest (ii) Starting with a downward velocity of $3 \mathrm{~m} / \mathrm{sec}$. Assume pulleys are weightless and frictionless.

Figure 7
UNIT-V
9. a) Determine the constant force P that will give the system of bodies shown in Figure-8 acceleration of $1 \mathrm{~m} / \mathrm{sec}^{2}$ starting from rest. Coefficient of friction between the blocks and the plane is 0.3 .Pulleys are smooth.

Figure 8
(OR)
10. Determine the time required for the weights shown in Figure-9 to attain a velocity of $9.81 \mathrm{~m} / \mathrm{sec}$. What is tension in the chord? Take $\mu=0.2$ for both planes. Assume the pulleys as frictionless

Figure 9

